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Introduction

How far from optimality are data-independent PAC-bounds computed using diagonal

covariance posteriors?
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The bounds

For fixed prior P, for any (), with probability at least 1 —0

KL(Q||P) + log(2£")

n

kl bound [2]: kI(Ls(Q)||L(Q)) <

L KL(Q||P) + log( 2™
linear bound [3] : L(Q) < g(g) | (QI] 3.5n0g( )

We sample from Q* (with density ¢*) minimizing the linear
bound and compute a risk certificate with the kl bound.
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Method part 11 - KL estimation

We can reduce this problem to estimating the log
—nﬁs(w)]

marginal likelihood log(Z) = logEw~ple
We compute the thermodynamic integral [1]...

—log(Z) = /01 LR [ni)s(w)} dg

where Tg e_5£5(w)p(w)
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upper bound on —log(2) = fO/EW~nB[nL5(w)]dB
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...by approximating it with the trapezium rule, which
we prove to give an upper bound on — log(Z).

Some results & takeaways

Setup Train/test stats 0-1 RC with kI bound

Method  Dataset Train 0-1 Test 0-1 KL/n  kl inverse asympt naive

MFVI Binary  0.0960 0.0928 0.0105 0.1640 0.1452  0.1640
Gibbs p. Binary  0.0404 0.0415 0.0195 0.1080 0.0702 0.1184

MFVI 14 x 14 0.1389 0.1313 0.0140 0.2379 0.1991  0.2379
“Gibbs p. 14 x 14 0.0695 0.0723 0.0381 0.1855 0.1335 0.1920

MFEVI MNIST 0.1236 0.1200 0.0196 0.2070 0.1987  0.2070
Gibbs p. MNIST 0.0653 0.0691 0.0334 0.1759 0.1269 0.1880

e Reasonable estimates, e.g. no bound violations

a

e Data-independent bounds can be tightened

e Improvement over MFVI is largest for small models
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e We estimate PAC-Bayes bounds at their FVI
optimal posterior instead of a MF Gaus-
slan approximation

e Leads to tighter bounds

e Shows the need for better posterior
approximations

Estimating optimal PAC-Bayes bounds SR

;r-
)

Vincent Fortuin® José Miguel Herndndez Lobato?

2Hemholtz AI, TU Munich

Glossary

our task supervised classification with NNs

F Gaussian A Gaussian with diagonal covariance

variational inference with MFEF (Gaussians

prior distribution on model weights
a (posterior) distribution on the weights

L(Q)
Ls(Q)

risk certificate

expected risk of randomized predictor ()

empirical risk on i.i.d. data sample S

a high-confidence upper bound on L(Q)

Method part I - Sampling from )* with HMC

e Why HMC? Can approximate complicated posteriors much better than MF Gaussians

e What’s the trade-oftf? It now becomes harder to estimate the bound

MFVI: looser bound, easy KL estimation

HMC: tighter bound, hard KL estimation 103

e MFVI mean HMC samples
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e Does it actually work? — our results are backed up by running extensive diagnostics
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Method part 111 - Ensuring a high-probability bound

We wish to produce a statement such as
L(@;) < {our estimate} with prob. at least 1 — ¢

For this we need concentration inequalities on our HMC estimates. It’s hard to check
convergence assumptions in MCMC, so we give 3 options

1. An i.i.d. concentration inequality on thinned samples

2. An asymptotic confidence interval which requires “good estimators”

3. A loose bound that only needs KL(C/Q\*HQ*) < KL(G||Q*) for a baseline MF Gaussian

Experiment details

Binary MNIST Subsampled MNIST

=15K params

=43k params =118k params



