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Introduction
How far from optimality are data-independent PAC-bounds computed using diagonal
covariance posteriors?
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posterior

Optimal
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• We estimate PAC-Bayes bounds at their
optimal posterior instead of a MF Gaus-
sian approximation

• Leads to tighter bounds

• Shows the need for better posterior
approximations

Glossary
our task supervised classification with NNs
MF Gaussian A Gaussian with diagonal covariance
MFVI variational inference with MF Gaussians
P prior distribution on model weights
Q a (posterior) distribution on the weights
L(Q) expected risk of randomized predictor Q

L̂S(Q) empirical risk on i.i.d. data sample S

risk certificate a high-confidence upper bound on L(Q)

The bounds
For fixed prior P , for any Q, with probability at least 1−δ

kl bound [2]: kl(L̂S(Q)||L(Q)) ≤
KL(Q||P ) + log( 2

√
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δ )
n

linear bound [3] : L(Q) ≤ L̂S(Q)
0.5 +

KL(Q||P ) + log( 2
√

n
δ )
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We sample from Q∗ (with density q∗) minimizing the linear
bound and compute a risk certificate with the kl bound.

q∗(w) ∝ e−nL̂S(w)p(w)

Method part I - Sampling from Q∗ with HMC
• Why HMC? Can approximate complicated posteriors much better than MF Gaussians

• What’s the trade-off? It now becomes harder to estimate the bound
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MFVI: looser bound, easy KL estimation
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• Does it actually work? → our results are backed up by running extensive diagnostics
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Method part II - KL estimation
We can reduce this problem to estimating the log
marginal likelihood log(Z) = logEw∼P [e−nL̂S(w)]
We compute the thermodynamic integral [1]...

− log(Z) =
∫ 1

0
Ew∼πβ

[
nL̂S(w)

]
dβ

where πβ ∝ e−βL̂S(w)p(w)

...by approximating it with the trapezium rule, which
we prove to give an upper bound on − log(Z).

Method part III - Ensuring a high-probability bound
We wish to produce a statement such as

L(Q̂∗) ≤ {our estimate} with prob. at least 1 − δ

For this we need concentration inequalities on our HMC estimates. It’s hard to check
convergence assumptions in MCMC, so we give 3 options

1. An i.i.d. concentration inequality on thinned samples

2. An asymptotic confidence interval which requires “good estimators”

3. A loose bound that only needs KL(Q̂∗||Q∗) < KL(G||Q∗) for a baseline MF Gaussian

Some results & takeaways
Setup Train/test stats 0-1 RC with kl bound

Method Dataset Train 0-1 Test 0-1 KL/n kl inverse asympt naive
MFVI Binary 0.0960 0.0928 0.0105 0.1640 0.1452 0.1640
Gibbs p. Binary 0.0404 0.0415 0.0195 0.1080 0.0702 0.1184
MFVI 14 × 14 0.1389 0.1313 0.0140 0.2379 0.1991 0.2379
Gibbs p. 14 × 14 0.0695 0.0723 0.0381 0.1855 0.1335 0.1920
MFVI MNIST 0.1236 0.1200 0.0196 0.2070 0.1987 0.2070
Gibbs p. MNIST 0.0653 0.0691 0.0334 0.1759 0.1269 0.1880

• Reasonable estimates, e.g. no bound violations

• Data-independent bounds can be tightened

• Improvement over MFVI is largest for small models

Experiment details
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