

TLDR: We present greedy rejection coding, the first relative entropy coding algorithm whose runtime and codelength are optimal.

Problem Setup and Motivation

Setup: Alice only: target Q. Alice & Bob: proposal P and public fair coin tosses s_1, s_2, \ldots **Goal:** Uniquely decodable code C which represents exact sample from Q.

Challenge and our Solution

Runtime of general REC (Agustsson and Theis, 2020)

Without further assumptions, any REC scheme has $\Omega(\exp(D_{\text{KL}}[Q||P]))$ expected runtime.

Our Solution

Greedy Rejection Coding, an algorithm extending rejection sampling with partitions.

Faster Relative Entropy Coding with Greedy Rejection Coding Gergely Flamich^{*1}, Stratis Markou^{*1}, José Miguel Hernández Lobato¹, {gf332, em626, jmh233}@cam.ac.uk, *Equal contribution, ¹University of Cambridge,

Let C be the code returned by greedy rejection coding. Then

 $\mathbb{E}[|C|] = D_{\rm KL}[Q||P] + 2\log(D_{\rm KL}[Q||P] + 1) + \mathcal{O}(1).$

Runtime of the on-sample splitting variant of GRC (informal)

For P, Q over \mathbb{R} with unimodal q/p, the expected runtime of GRCS is $\mathbb{E}[T] = \mathcal{O}(D_{\mathrm{KL}}[Q \| P]).$

Improves on A^* coding (previous best): optimal codelength and order-optimal runtime.

Experiments

Synthetic experiments

Compression with VAEs (MNIST)

# Latent	Neg. ELBO (BPD)	GRC (BPD)
20	1.391 ± 0.004	1.472 ± 0.004
50	1.357 ± 0.003	1.511 ± 0.003
100	1.362 ± 0.003	1.523 ± 0.003

Codelengths with Gaussian Q and P \overline{C} $-\overline{O}$ - AS* $-\overline{O}$ - AD^{*} $-\overline{O}$ - GRCS $-\overline{O}$ - GRCD Codelength 0 0 10 $D_{KL}[Q||P]$