Greedy Poisson rejection sampling (GPRS) is the first channel simulation / relative entropy coding algorithm whose runtime is optimally fast.

Problem Setup and Motivation

Standard transform coding:

- 1. Receive data $Y \sim P_Y$
- 2. Transform the data and quantize it:

$$X \leftarrow \lfloor f(Y) \rceil$$

3. Encode X with P_X using entropy coding

Problem:

Cannot learn f using gradient descent!

Use relative entropy coding instead!

- 1. Receive data $Y \sim P_Y$
- 2. Transform the data and **perturb** it

$$X \leftarrow f(Y$$

e.g. can use $\epsilon \sim \mathcal{N}(0, I)$

3. Encode X with $P_{X|Y}$ using relative entropy coding

Benefits:

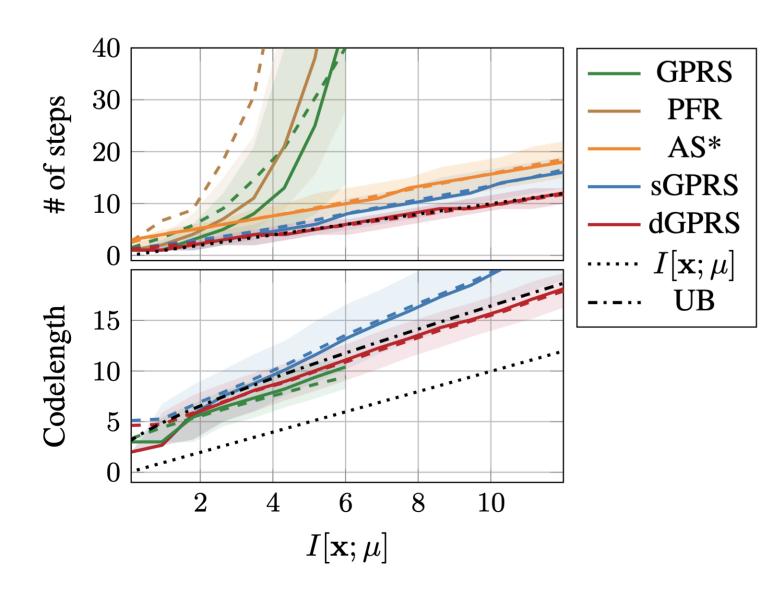
- Can learn f using gradient descent!
- Can incorporate realism constraints!
- Can be used to achieve differential privacy!

Challenge:

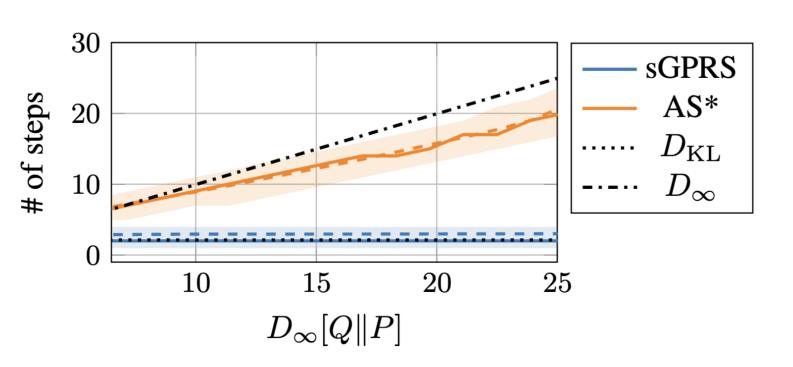
Runtime of general REC (Agustsson and Theis, 2020)

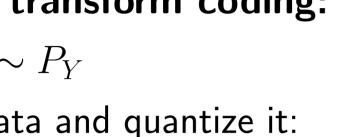
Without further assumptions, any REC scheme has $\Omega(\exp(D_{\text{KL}}[Q||P]))$ expected runtime.

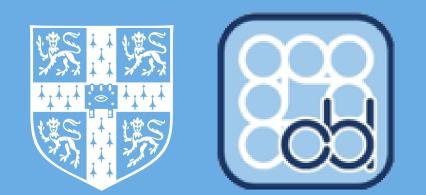
Comparison with Other Methods



One-shot comparison with A^{*} coding





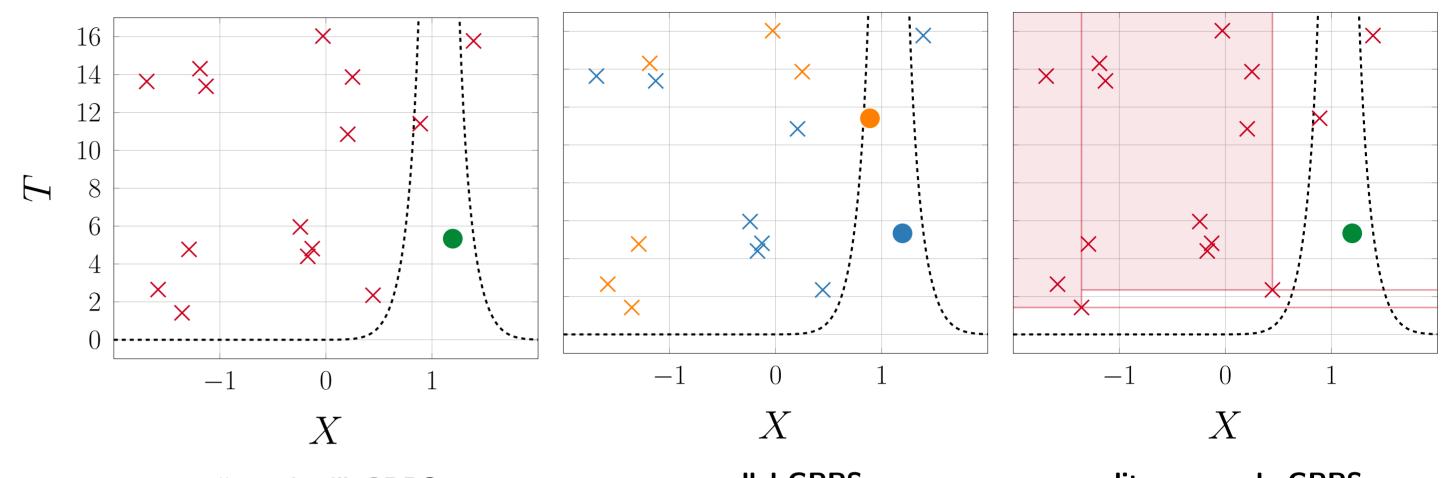


Greedy Poisson Rejection Sampling

Gergely Flamich¹

gf332@cam.ac.uk, ¹University of Cambridge

Greedy Poisson Rejection Sampling



"standard" GPRS

parallel GPRS

High-level idea

- Use Poisson process Π with mean measure $\lambda \times P$, where P is the proposal distribution.
- Accept first point of Π that falls below an appropriately chosen function φ .

How to find φ ?

WLOG, assume $\varphi = \sigma \circ \frac{dQ}{dP}$, where Q is the target distribution.

$$\left(\sigma^{-1}\right)' = w_Q\left(\sigma^{-1}\right) - \sigma^{-1} \cdot w_P\left(\sigma^{-1}\right), \quad \text{with} \quad \sigma^{-1}(0) = 0, \tag{1}$$

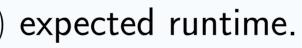
where $w_P(h) \stackrel{def}{=} \mathbb{P}_{Z \sim P}\left[\frac{dQ}{dP}(Z) \ge h\right].$

Codelength of channel simulation protocol using GPRS (informal) Let $X, Y \sim P_{X,Y}$, and C be the code returned by GPRS applied to X, Y. Then $\mathbb{E}[|C|] = \mathbb{I}[X : Y] + \log(\mathbb{I}[X : Y] + 1) + \mathcal{O}(1).$

Runtime of split-on-sample GPRS (informal)

For P, Q over \mathbb{R} with unimodal q/p, the expected runtime D of split-on-sample GPRS is $\mathbb{E}[D] = \mathcal{O}(D_{\mathrm{KL}}[Q \| P]).$

$$)+\epsilon,$$



One-shot runtime scales with $D_{\text{KL}}[Q||P]$ instead of $D_{\infty}[Q||P]!$

split-on-sample GPRS