TL;DR: We prove complexity bounds for approximate sampling, improving the results of Block and Polyanskiy (2023).

Problem Setup and Motivation

Have: target Q, samples $X_1, X_2, \ldots, X_N \sim P^{\otimes N}$ Want: $Y \sim \widetilde{Q}$

How do we pick N so that $D_{TV}[Q \parallel \widetilde{Q}] \leq \epsilon$? N = 10N = 50

Rejection Sampling

Usual selection rule: $K = \min \left\{ k \in \mathbb{N} \mid U_k \leq \frac{dQ}{dP}(X_k) / \left\| \frac{dQ}{dP} \right\|_{\infty} \right\}$ "Impatient" selection rule: $K_N = \begin{cases} K & \text{if } K \leq N \\ 1 & \text{otherwise.} \end{cases}$ Bound TV:

 $D_{TV}[Q \parallel \widetilde{Q}] = \mathbb{P}[K > N] \cdot D_{TV}[Q \parallel P] \le \mathbb{P}[K > N] \le \exp$

Control $||dQ/dP||_{\infty}$: "chop off" top of dQ/dP.

Approximate Rejection Sampling Complexity (Block and Polyanskiy, 2023)

$$N \ge \frac{2}{1-\epsilon} \log\left(\frac{2}{\epsilon}\right) \left(f'\right)^{-1} \left(\frac{4 \cdot D_f[Q \parallel P]}{\epsilon}\right) \implies D_{TV}[$$

Some Notes on the Sample Complexity of Approximate Channel Simulation Gergely Flamich¹, Lennie Wells¹

{gf332, ww347}@cam.ac.uk, ¹University of Cambridge

Improved Approximate Rejection Sampling

Improved Approximate Rejection Sampling Complexity

$$\forall \gamma \in (0,1): N \ge \log\left(\frac{1}{(1-\gamma)\epsilon}\right) (f')^{-1} \left(\frac{1}{(1-\gamma)\epsilon}\right) (f')^{-1} \left$$

Approximate Poisson Functional Representation

Poisson process T_1, T_2, \ldots PFR selection rule: $K = \arg\min_{k \in \mathbb{N}} \left\{ T_k / \frac{dQ}{dP}(X_k) \right\}$ Markov:

Li and El Gamal (2018): $\mathbb{E}[\log K] \le D_{\text{KL}}[Q \parallel P] + e^{-1} + \log 2$

PFR sample complexity

$$N \ge \exp\left(\frac{D_{\mathrm{KL}}[Q \parallel P] + e^{-1} + \log P_{\epsilon}}{\epsilon}\right)$$

References

Block, A. and Polyanskiy, Y. (2023). The sample complexity of approximate rejection sampling with applications to smoothed online learning. In COLT 2023, pages 228–273. PMLR. Li, C. T. and El Gamal, A. (2018). Strong functional representation lemma and applications to coding theorems. IEEE Transactions on Information Theory, 64(11):6967–6978.

$$\left(-N \middle/ \left\| \frac{dQ}{dP} \right\|_{\infty} \right)$$

 $[Q \parallel \widetilde{Q}] \le \epsilon$

