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Paper

TL;DR: We prove complexity bounds for approximate sampling, improving the results of Block and Polyanskiy (2023).

Problem Setup and Motivation

Have: target Q, samples X1,X2, . . . ,XN ∼ P⊗N

Want: Y ∼ Q̃

How do we pick N so that DTV [Q ∥ Q̃] ≤ ϵ?
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Improved Approximate Rejection Sampling Complexity

∀γ ∈ (0, 1) : N ≥ log
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=⇒ DTV [Q ∥ Q̃] ≤ ϵ

Approximate Poisson Functional Representation

Poisson process T1,T2, . . .

PFR selection rule: K = argmink∈N

{
Tk

/
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}
Markov:

P[K > N ] = P[logK > logN ] ≤ E[logK]

logN

Li and El Gamal (2018): E[logK] ≤ DKL[Q ∥ P ] + e−1 + log 2

PFR sample complexity

N ≥ exp

(
DKL[Q ∥ P ] + e−1 + log 2

ϵ

)
=⇒ DTV [Q ∥ Q̃] ≤ ϵ
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Rejection Sampling

Usual selection rule: K = min
{
k ∈ N | Uk ≤ dQ

dP (Xk)
/∥∥∥dQ

dP

∥∥∥
∞

}
“Impatient” selection rule: KN =

{
K if K ≤ N

1 otherwise.

Bound TV:

DTV [Q ∥ Q̃] = P[K > N ] ·DTV [Q ∥ P ] ≤ P[K > N ] ≤ exp
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)
Control ∥dQ/dP∥∞: “chop off” top of dQ/dP .

Approximate Rejection Sampling Complexity (Block and Polyanskiy, 2023)
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