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Channel Simulation vs Lossy Source Coding

Figure 1: Bottom-right image from Careil et al. [2023]



Channel Simulation

1 X ,Y ∼ PX ,Y

2 Common randomness S

3 Receive X ∼ PX , send code C , decode Y ∼ PY |X

4 Efficiency [Li and El Gamal, 2018]:

DKL[PY |X∥PY ]

≤ES [|C | | X ]

≤ DKL[PY |X∥PY ] + log2(DKL[PY |X∥PY ] + 1) + 4

5 No algorithm with poly(DKL[PY |X∥PY ]) runtime! [Agustsson and
Theis, 2020].



Computational framework

Harsha et al. [2007]:

• X1,X2, . . . ,XN , . . . ∼ P

• XN ∼ Q

Causal rejection sampling:

• N is a stopping time:

{N > n} ⊥ Xn+1, . . .

Runtime of causal rejection samplers

The expected runtime of any causal rejection sampler is lower-
bounded by:

exp(D∞[Q∥P])



New Divergence

Channel Simulation Divergence

For Q ≪ P:

DCS [Q∥P] = −
∫ ∞

h=0
w(h) log2(w(h)) dh

where:
w(h) = PX∼P

[
dQ

dP
(X ) ≥ h

]
= P

(
dQ

dP
≥ h

)

Figure 2: Left: “KL” Right: “CSD”



Comparison with KL Divergence

Properties of channel simulation divergence:

• Non-negativity:

DCS [Q∥P] ≥ 0

• Convexity:

DCS [λQ1 + (1− λ)Q2∥P] ≤ λDCS [Q1∥P] + (1− λ)DCS [Q2∥P]

• A sandwich bound:

DKL[Q∥P] ≤ DCS [Q∥P] ≤ DKL[Q∥P] + log2(DKL[Q∥P] + 1) + 1



Key Result

Entropy of causal rejection samplers

Let (P,Q) be a pair of distributions. Let N be an index returned
by causal rejection sampler with proposal P and target Q. Then:

DCS [Q∥P] ≤ H[N | S ]

Furthermore, if N is the index returned, then:

DCS [Q∥P] ≤ H[N | S ] ≤ DCS [Q∥P] + log2(e + 1)

EX

[
DCS [PY |X∥PY ]

]
≤ H[Y | X ,S ] ≤ H[Y | S ] ≤ ES [|C |]



Numerical Examples

• (A): 1D Laplace
• P = L(0, 1)

• Q = L(0, b)

• DCS [Q∥P] · ln 2 = b + ψ(1/b) + γ − 1

• DCS [Q∥P]− DKL[Q∥P] → γ log2 e as b → 0

• (B): d iid Gaussians
• P = N (0, 1)⊗d

• Q = N (1, 1/4)⊗d

• How does DCS [Q∥P]− DKL[Q∥P] scale as d → ∞?



Numerical Results

DCS [Q∥P]− DKL[Q∥P] 1
2 log2(DKL[Q∥P] + 1)

log2(DKL[Q∥P] + 1) + 1
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Figure 3: A) Q = L(0, b),P = L(0, 1). B) Q = N (1, 1/4)⊗d ,P = N (0, 1)⊗d



Contributions

• Shown that for any causal rejection sampler

exp(D∞[Q∥P]) ≤ E [N]

• Defined and analysed new statistical distance DCS [Q∥P].

• Shown that

DCS [Q∥P] ≤ H[N | S ] ≤ DCS [Q∥P] + log2(e + 1)

• Demonstrated non-trivial lower-bounds.

Shout-out: For upper-bounds: Optimal Redundancy in Exact Channel
Synthesis by Sriramu and Wagner [2024].
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Relation to Excess Functional Information

Li and El Gamal (2017) defined:

Ψ(X → Y ) = inf
Z :Z⊥⊥X ,H(Y |X ,Z)=0

I (X ;Z |Y )

Excess functional information

Let X ,Y be two correlated variables. Then:

0 ≤ Ψ(X → Y ) ≤ log2(I (X ;Y ) + 1) + 4

We show that:

EX

[
DCS [PY |X∥PY ]

]
≤ Ψ(Y → X ) + I (X ;Y )
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