SOME NOTES ON THE SAMPLE COMPLEXITY OF APPROXIMATE CHANNEL SIMULATION

GERGELY FLAMICH AND LENNIE WELLS 07/06/2024

GERGELY-FLAMICH.GITHUB.IO

IN COLLABORATION WITH

STUDYING CHANNEL SIMULATION HELPS APPROXIMATE SAMPLING!

If we want $TV[Q\,||\tilde{Q}] \leq \epsilon$, how big should N be?

K - selection rule of exact sampler

K - selection rule of exact sampler

$$egin{aligned} TV[Q\,|| ilde{Q}] &= \mathbb{P}[K>N]\cdot TV[Q\,||P] \ &\leq \mathbb{P}[K>N] \end{aligned}$$

K - selection rule of exact sampler

$$egin{aligned} TV[Q\,|| ilde{Q}] &= \mathbb{P}[K>N] \cdot TV[Q\,||P] \ &\leq \mathbb{P}[K>N] \end{aligned}$$

Block and Polyanskiy (2023):

K - selection rule of exact sampler

$$egin{aligned} TV[Q\,|| ilde{Q}] &= \mathbb{P}[K>N]\cdot TV[Q\,||P] \ &\leq \mathbb{P}[K>N] \end{aligned}$$

Block and Polyanskiy (2023):

$$N \geq rac{2}{1-\epsilon} \log\left(rac{2}{\epsilon}
ight) \exp\left(rac{4 \cdot KL[Q \,||\, P]}{\epsilon}
ight)$$

 X_1, X_2, \ldots where $X_i \sim P$

 X_1, X_2, \ldots where $X_i \sim P$

Augment with Poisson process T_1, T_2, \ldots

$$X_1, X_2, \ldots$$
 where $X_i \sim P$

Augment with Poisson process T_1, T_2, \ldots

Select
$$K = rg \min_{k \in \mathbb{N}} \left\{ T_k \middle/ rac{dQ}{dP}(X_k)
ight\}$$

$$K = rg\min_{k \in \mathbb{N}} \left\{ T_k \Big/ rac{dQ}{dP}(X_k)
ight\}$$

$$K = rg\min_{k \in \mathbb{N}} \left\{ T_k \Big/ rac{dQ}{dP}(X_k)
ight\}$$

$$K = rg\min_{k \in \mathbb{N}} \left\{ T_k \Big/ rac{dQ}{dP}(X_k)
ight\}$$

$$K = rg\min_{k \in \mathbb{N}} \left\{ T_k \Big/ rac{dQ}{dP}(X_k)
ight\}$$

$$K = rg\min_{k \in \mathbb{N}} \left\{ T_k \Big/ rac{dQ}{dP}(X_k)
ight\}$$

$$\mathbb{P}[K>N]$$

$$\mathbb{P}[K>N] = \mathbb{P}[\log K > \log N]$$

$$\mathbb{P}[K > N] = \mathbb{P}[\log K > \log N] \leq rac{\mathbb{E}[\log K]}{\log N}$$

$$\mathbb{P}[K > N] = \mathbb{P}[\log K > \log N] \leq \frac{\mathbb{E}[\log K]}{\log N} = \epsilon$$

$$\mathbb{P}[K > N] = \mathbb{P}[\log K > \log N] \leq rac{\mathbb{E}[\log K]}{\log N} = \epsilon$$

Hence, to ensure $TV[Q\,|| ilde{Q}] \leq \epsilon$, pick

$$\mathbb{P}[K > N] = \mathbb{P}[\log K > \log N] \leq rac{\mathbb{E}[\log K]}{\log N} = \epsilon$$

Hence, to ensure $TV[Q\,|| ilde{Q}] \leq \epsilon$, pick

$$N \geq \exp\left(rac{\mathbb{E}[\log K]}{\epsilon}
ight)$$

$$\mathbb{P}[K > N] = \mathbb{P}[\log K > \log N] \leq rac{\mathbb{E}[\log K]}{\log N} = \epsilon$$

Hence, to ensure $TV[Q\,|| ilde{Q}] \leq \epsilon$, pick

$$N \geq \exp\left(rac{\mathbb{E}[\log K]}{\epsilon}
ight)$$

Li and El Gamal (2018):

$$\mathbb{E}[\log K] \leq KL[Q \,||\, P] + \mathcal{O}(1)$$

$$N \geq \exp\left(rac{KL[Q\,||\,P] + \mathcal{O}(1)}{\epsilon}
ight)$$

$$N \geq \exp\left(rac{KL[Q\,||\,P] + \mathcal{O}(1)}{\epsilon}
ight)$$

Furthermore:

$$N \geq \exp\left(rac{KL[Q\,||\,P] + \mathcal{O}(1)}{\epsilon}
ight)$$

Furthermore:

$$\mathbb{H}[K] \leq KL[Q \mid\mid P] + \log(KL[Q \mid\mid P] + 1) + \mathcal{O}(1)$$

1. Demonstrated that results from channel simulation can be used to improve approximate sampling bour

- 1. Demonstrated that results from channel simulation can be used to improve approximate sampling bour
- 2. For general f divergences, improve bound to

$$\log\left(rac{1}{(1-\gamma)\epsilon}
ight) \left(f'
ight)^{-1} \left(rac{D_f[Q\,||\,P]}{\gamma\epsilon}
ight) \quad \gamma\in(0)$$

- 1. Demonstrated that results from channel simulation can be used to improve approximate sampling bour
- 2. For general f divergences, improve bound to

$$\log\left(rac{1}{(1-\gamma)\epsilon}
ight) \left(f'
ight)^{-1} \left(rac{D_f[Q\,||\,P]}{\gamma\epsilon}
ight) \quad \gamma\in(0)$$

3. See paper for additional sampling complexity boun

REFERENCES

- Block, A., & Polyanskiy, Y. (2023, July). The sample complexity of approximate rejection sampling with applications to smoothed online learning. In The Thirty Sixth Annual Conference on Learning Theory (pp. 228-273).
- Li, C. T., & El Gamal, A. (2018). Strong functional representation lemma and applications to coding theorems. IEEE Transactions on Information Theory, 64(11), 6967-6978.

MORE GENERAL BOUNDS

Block and Polyanskiy (2023):

$$N \geq rac{2}{1-\epsilon} \mathrm{log}\left(rac{2}{\epsilon}
ight) \left(f'
ight)^{-1} \left(rac{\mathbf{4} \cdot D_f[Q \,||\, P]}{\epsilon}
ight)$$

Ours: for $\gamma \in (0,1)$

$$N \geq \log \left(rac{1}{(1-\gamma)\epsilon}
ight) \left(f'
ight)^{-1} \left(rac{D_f[Q\,||\,P]}{\gamma\epsilon}
ight)$$