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STUDYING CHANNEL
SIMULATION HELPS
APPROXIMATE SAMPLING!
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ifwe want TV[Q ||Q] < €, how big should N be?
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Augment with Poisson process 17, 15, ...

Select K = arg min, {Tk/j—g (Xk)}



POISSON FUNCTIONAL
REPRESENTATION

K = arg ming, {Tk/j—%(Xk)}



POISSON FUNCTIONAL
REPRESENTATION

K = arg ming, {Tk/j—%(Xk)}






POISSON FUNCTIONAL
REPRESENTATION

K = arg ming, {Tk/j—%(Xk)}



dO/dP ®° e

' 4




POISSON FUNCTIONAL
REPRESENTATION

K = arg ming, {Tk/j—%(Xk)}



g

==

%




POISSON FUNCTIONAL
REPRESENTATION

K = arg ming, {Tk/j—%(Xk)}






HOW IS THIS USEFUL?



HOW IS THIS USEFUL?

P K > N|



HOW IS THIS USEFUL?

PIK > N| =P|log K > log N|



HOW IS THIS USEFUL?

PK > N| =P|log K > log N| <

4

ilog K|

log N



HOW IS THIS USEFUL?

PK > N| =P|log K > log N| <

4

‘|log K|

log N

— €



HOW IS THIS USEFUL?

i |log K|
PIK > N| =Pllog K >log N| < — =€
log N

Hence, to ensure TV[Q ||Q] < e, pick




HOW IS THIS USEFUL?

illog K|
PIK > N| =Pllog K > log N| < — = €
log N
Hence, to ensure TV[Q ||Q] < e, pick
Cllog K
N > exp ( log K| )
€



HOW IS THIS USEFUL?

i |log K|

PIK > N| =Pllog K > log N| < = €

log N

Hence, to ensure TV[Q ||Q] < e, pick

i |log K|

NZexp(

Li and El Gama
43[logK] < KL[Q
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| (2018):
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Furthermore;

HIK] < KL|Q|| P| +log(KL|Q || P] + 1) + O(1)
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1. Demonstrated that results from channel simulation
can be used to improve approximate sampling bour
2. For general f - divergences, improve bound to

1og((1_17)6)(f,)1<Df[ciup}) e (0

3. See paper for additional sampling complexity boun
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MORE GENERAL BOUNDS

Block and Polyanskiy (2023):

N> - “_log <3>(f')1 <4°Df[QHP]>

Ours: fory € (0, 1)

N > log( ! )e>(f/)1 (Df[QHP]>
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