RECOMBINER: Robust and Enhanced Compression with Bayesian Implicit Neural Representations

Jiajun He*, Gergely Flamich*, Zongyu Guo, José Miguel Hernández-Lobato

*equal contribution

Background: INRs, COIN and COMBINER

Background: Implicit Neural Representations (INR)

Background: Compression with Implicit Neural Representations (COIN)

Background: Compression with Bayesian Implicit Neural Representations (COMBINER)

Issues with COMBINER

and our solution:

Robust and Enhanced COMBINER

Issue 1: Mean-field variational inference tends to underfit

Solution: Use full-covariance Gaussian...?

Issue 1:

Mean-field variational inference tends to underfit

Solution:

Use full-covariance Gaussian...? it is too expensive and unstable...

Issue 1:

Mean-field variational inference tends to underfit

Solution:

use a *factorized Gaussian* and a *linear transformation* to parameterize a full-covariance Gaussian!

wait... we also need to transmit the matrix A ?

wait...

we also need to transmit the matrix A?

No!

We learn A on the training set and fix it when compressing new data!

Issue 2: Overfitting an INR is challenging

Solution:

Learn and encode *positional embeddings* as the input to the INR

Issue 3: It's difficult to scale COMBINER to high-res data

Solution: Compress patches...?

Issue 3: It's difficult to scale COMBINER to high-res data

Solution: Compress patches...? we waste bits if many patches are similar...

Issue 3: It's difficult to scale COMBINER to high-res data

Solution:

Compress patches... and use a *hierarchical Bayesian model* to account for the similarity!

Experimental Results

Learnable positional embeddings facilitate local deviations

(a) w/o Positional embeddings

(b) w. Positional embeddings

RECOMBINER is more robust to model choice

Poster Session: 9:45 - 11:45 Friday, 10 May

Our code is available at: https://github.com/cambridge-mlg/RECOMBINER