
Poisson Processes Reading Group Notes

Gergely Flamich

November 15, 2023

1 Outline

• what defines a PP? independence, and mean measure

• simulation:

1. count first, points second

2. in time order

• thinning, mapping and restriction: maybe draw a triangle?

• superposition theorem

• equivalence with Gumbel processes in log-space

• emphasize dual view: all the points are there already, vs computational simulation

• the intensity transform for Poisson processes: processes of Poisson type

• Indexing processes

• I won’t be dealing with:

1. Markov Chains

2. fitting the mean measure of Poisson processes

2 General Poisson processes

Let Π denote the set of points in space.
Define:

• N(A) = #(Π ∩A)

• µ(A) = E[N(A)]

Two conditions:

1. if A ∩B = ∅, then N(A) ⊥ N(B)

2. N(A) is Poisson distributed with mean µ(A).

Assume that the base measure is normalized, things also work when stuff is not normalized
PP is localized: whatever happens in set A is independent of whatever happens outside
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2.1 Simulating General PPs

• no structure assumed on Ω

• pick a partition B1, . . . of Ω

• sample N(Bi) ∼ Pois(µ(Bi))

• sample X1, . . . , XN(Bi) ∼ µ(·)/µ(Bi).

2.2 Modifying Poisson processes

1. Superposition theorem: Let Π1,Π2 be independent Poisson processes on the same space
with mean measures µ1 and µ2. Then, Π = Π1 ∪ Π2 is a Poisson process with mean measure
µ(A) = µ1(A) + µ2(A). (Generalizes to countable superposition)

2. Thinning theorem: Let Π be a Poisson process over Ω with mean measure µ, and let
S(x) ∼ Bernoulli(ρ(x)) for ρ : Ω → [0, 1]. Let

S(Π) = {X ∈ Π | S(X) = 1}. (1)

Then, S(Π) is a Poisson process with mean measure

µ∗(A) =

∫
A

ρ dµ (2)

3. Mapping Theorem: Let Π be a Poisson process on Ω, and let h : Ω → Ψ be one-to-one.
Then,

h(Π) = {h(X) ∈ Ψ | X ∈ Π} (3)

is a Poisson process over Ψ with mean measure

h∗µ(A) = µ(h−1(A)). (4)

This extends to any case where h∗µ is non-atomic, e.g. projections

4. Restriction theorem: Let Π be a process over Ω with mean measure µ. Let U ⊆ Ω. Then
Π|U = Π ∩ U is a Poisson process with mean measure µ|U (A) = µ(A ∩ U).

3 Using PPs for sampling: Exponential Races

Use spatio-temporal processes over Ω = R+ ×A, with mean measure

µ(A) =

∫
A

p(x | t)λ(t) dx dt (5)

Idea: we will want to sample from a distribution Q over A, augment this space with time R+.
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Time-projection:

proj(Π) = {t ∈ R+ | ∃x ∈ A : (t, x) ∈ Π} (6)

Then:

proj∗µ(B) =

∫
B

λ(t) dt (7)

Distribution of the first arrival:

P[T ≥ t] = P[N(t) = 0] = e−µ(t) (8)

In general:

P[Tk ≥ t | Tk−1] = exp (−(µ(t)− µ(Tk−1))) (9)

Define:

Λ(t) =

∫ t

0

λ(τ) dτ (10)

Cumulative intensity transform:

(Λ ◦ proj)∗µ(B) =

∫
Λ−1(B)

λ(t) dt, set u = Λ(t) (11)

=

∫
B

du (12)

Hence, we can always transform a spatiotemporal process to be time-homogeneous.

3.1 Simulating exponential races

Time homogeneous process:

P[T ≥ t] = e−t ⇒ T ∼ Exp(1) (13)

Hence, simulate (Tk − Tk−1) ∼ Exp, then compute Tk, then simulate Xk ∼ p(x | Tk).

3.1.1 Numerical stability: Gumbel processes

Simulate stuff in the log-domain! Let T1 ∼ E(λ)

Exp(λ) ∼ 1

λ
· Exp(1) (14)

⇒ − log T1 = log λ− logE(1) = log λ+G1 ∼ Gumbel(log λ) (15)

Where P[G1 ≤ g] = ee
−g

. Furthermore:

Gk | Gk−1 ∼ Gumbel(0)|(−∞,Gk−1) (16)
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4 Basic Applications

We now have our hammer, let’s hit some nails!

4.1 Superposition theorem: Gumbel-max Trick

Let’s use a discrete alphabet |A| = K. Pick λ1, . . . , λK ∈ R+ as our rates, and let Π1, . . . ,ΠK be
Poisson processes with intensities λ1 · δ(x = 1), . . . , λK · δ(x = K). Now, define

Π =
⋃
k

Πk. (17)

Then

λ(t, x) =
∑
k

λk · δ(x = k). (18)

Then, the projected intensity is

λ(t) =
∑
j

∑
k

λk · δ(j = k) (19)

=
∑
k

λk (20)

From which

p(x | t) = λ(x, t)

λ(t)
(21)

=
∑
k

λk∑
j λj

· δ(x = k) (22)

Thus,

p(x = k | t) = λk∑
j λj

(23)

How can we simulate the first arrival of Π?

1. first arrival of Π only depends on the first arrivals of Πk

2. simulate first arrival of each process separately: 1
λk

· Ek, where Ek ∼ Exp(1)

3. first arrival time of Π is earliest arrival across all of Πk:

T1 = min
k

{
Ek

λk

}
(24)

4. first arrival coordinate of Π is

X1 = argmin
k

{
Ek

λk

}
(25)

= argmax {Gk + log λk} (26)
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4.2 Thinning theorem: Rejection Sampling

REMINDER: from here onwards, divide the board into picture of PP and calculation
From now: assume we have a target Q and a proposal P . We can sample from P and can evaluate
r = q/p.

Idea: Set Π as the base process over R+ × A with mean measure λ × P . Then, use one of the
theorems to modify Π, find first arrival of modified process.

1. Thinning theorem:

µ∗(A) =

∫
A

ρ(x)p(x) dx dt. (27)

Want:

µ∗(A) =

∫
A

q(x) dx dt. (28)

Therefore, set

ρ(x) = q(x)/p(x). (29)

2. However, we need to ensure that 0 ≤ ρ(x) ≤ 1. So instead, set

ρ(x) =
q(x)

M · p(x)
, (30)

where M = sup{q(x)/p(x)}

3. Hence, to sample, simulate Π, and for an arrival (T,X), delete it with probability r(x)/M .
Return the first point that wasn’t deleted.

4.3 Mapping theorem: A* Sampling

Similar idea as before.

1. Mapping theorem: for h one-to-one, we have

h∗µ([0, s]×B) =

∫
h−1([0,s]×B)

p(x) dx dt (31)

Want:

h∗µ([0, s]×B) =

∫
[0,s]×B

q(x) dx dt (32)

= s

∫
B

q(x)dx (33)
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Idea: Restrict to only temporal shifts. Especially good idea, since R+ is guaranteed to have
“more” structure. Thus, let h(t, x) = (f(x, t), x). Then:

h∗µ([0, s]×B) =

∫
h−1([0,s]×B)

p(x) dx dt (34)

=

∫
B

∫
f−1([0,s],x)

p(x) dt dx (35)

=

∫
B

∫ f−1(s,x)

f−1(0,x)

p(x) dt dx (36)

=

∫
B

(f−1(s, x)− f−1(0, x))p(x) dt dx (37)

Therefore, we want f−1(0, x) = 0, and f−1(s, x)p(x) = s · q(x). Thus,

f−1(s, x) = s · q(x)
p(x)

(38)

From which

f(t, x) = t · p(x)
q(x)

(39)

h(t, x) =

(
t · p(x)

q(x)
, x

)
(40)

2. runtime is geometric

3. Simulation:

4. depth-limitation possible

4.4 Restriction theorem: Greedy Poisson Rejection Sampling

Again, similar idea as before. We pick a function φ : A → R+ and let

U = {(t, x) ∈ R+ ×A | t ≤ φ(x)} (41)

Then, by the restriction theorem, Π|U is a Poisson process with mean measure

µ|U (A) = µ(A ∩ U) (42)

Let (T̃ , X̃) be the first arrival off Π|U , and let X̃ ∼ qφ. Then,

qφ(x)

p(x)
=

∫ φ(x)

0

P[T̃ ≥ t] dt. (43)

WLOG, we can decompose φ = σ ◦ r. Then, we want to pick σ such that qφ = q. It turns out, that
to achieve this, σ−1 must solve(

σ−1
)′

= wQ

(
σ−1

)
− σ−1 · wP

(
σ−1

)
, (44)
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where

wP (h) = PZ∼P

[
q(Z)

p(Z)
≥ h

]
. (45)

For the triangular-uniform case, where the triangle has base ℓ:

σ(h) =
2h

2− ℓ · h
(46)
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