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1 Outline

e what defines a PP? independence, and mean measure
e simulation:

1. count first, points second

2. in time order
e thinning, mapping and restriction: maybe draw a triangle?
e superposition theorem
e cquivalence with Gumbel processes in log-space
e emphasize dual view: all the points are there already, vs computational simulation
e the intensity transform for Poisson processes: processes of Poisson type

e Indexing processes

I won’t be dealing with:
1. Markov Chains

2. fitting the mean measure of Poisson processes

2 General Poisson processes

Let IT denote the set of points in space.
Define:

e N(A)=#INA)
o u(4) = EIN(4)]
Two conditions:
1. if AN B =0, then N(A) L N(B)
2. N(A) is Poisson distributed with mean pu(A).

Assume that the base measure is normalized, things also work when stuff is not normalized
PP is localized: whatever happens in set A is independent of whatever happens outside



2.1

2.2

3

Simulating General PPs

no structure assumed on 2
pick a partition Bq,... of Q
sample N (B;) ~ Pois(u(B;))

sample X1,..., Xn(p,) ~ u(-)/u(B;).

Modifying Poisson processes

. Superposition theorem: Let II;,II; be independent Poisson processes on the same space

with mean measures pq and pe. Then, IT = II; U Ils is a Poisson process with mean measure
#(A) = p1(A) + p2(A). (Generalizes to countable superposition)

. Thinning theorem: Let II be a Poisson process over {2 with mean measure p, and let

S(x) ~ Bernoulli(p(x)) for p: 2 — [0,1]. Let
SII) ={X eIl | S(X) =1} (1)

Then, S(IT) is a Poisson process with mean measure

p(A) = /A pdp (2)

. Mapping Theorem: Let IT be a Poisson process on 2, and let A : Q@ — ¥ be one-to-one.

Then,
R(II) = {h(X) € ¥ | X €11} (3)
is a Poisson process over ¥ with mean measure
hon(A) = p(h~"(A)). (4)

This extends to any case where h,p is non-atomic, e.g. projections

. Restriction theorem: Let II be a process over () with mean measure p. Let U C Q. Then

IMly =IINU is a Poisson process with mean measure u|y(A) = p(ANU).

Using PPs for sampling: Exponential Races

Use spatio-temporal processes over {2 = RT x A, with mean measure

§(A) = /A p( | OA(E) da dt (5)

Idea: we will want to sample from a distribution Q over A, augment this space with time R™.



Time-projection:
proj(Il) = {t e R | Fw € A: (¢,x) € [T}

Then:

proj,u(B) = /B A(t) dt

Distribution of the first arrival:
BT > 1] = BN (1) = 0] = e+
In general:
B[k > ¢ | Ties) = oxp (~(u(t) — p(Ti1))

Define:

Cumulative intensity transform:

(A o proj).u(B) = /A_ At)dt, setu=A(t)

Hence, we can always transform a spatiotemporal process to be time-homogeneous.

3.1 Simulating exponential races

Time homogeneous process:

P[T>t=e¢"' = T~Exp(l)

Hence, simulate (T — Tx—1) ~ Exp, then compute T}, then simulate Xy, ~ p(x | Tj).

3.1.1 Numerical stability: Gumbel processes

Simulate stuff in the log-domain! Let T} ~ E())

1
Bxp(}) ~ 1 - Exp(1)
= —logT) =log A —logE(1) = log A + G1 ~ Gumbel(log )
Where P[G; < g] = e . Furthermore:

Gk ‘ Gk—l ~ Gumbe1(0)|(,oo$gk_l)

(10)

(13)



4 Basic Applications

We now have our hammer, let’s hit some nails!

4.1 Superposition theorem: Gumbel-max Trick

Let’s use a discrete alphabet |A| = K. Pick Aq,..., Ax € RT as our rates, and let Iy,

Poisson processes with intensities A1 - 6(x = 1),..., g - 6(x = K). Now, define

H:UHk.
k

Then

Then, the projected intensity is

7 k
= Z Ak
k
From which
A t)
Ak
= o0(x =k)
25N
Thus,
Ak
plo=k| 1) =
Zj Aj

How can we simulate the first arrival of 11?7
1. first arrival of II only depends on the first arrivals of IIj,
2. simulate first arrival of each process separately: % - By, where Ej ~ Exp(1)

3. first arrival time of II is earliest arrival across all of IIj:

. Ek
T = _r
1—Inkm{)\k}

E
X = argmin{k}
k Ak

= arg max {Gy, + log Ay}

4. first arrival coordinate of II is

...,HK be

(17)

(18)



4.2 Thinning theorem: Rejection Sampling

REMINDER: from here onwards, divide the board into picture of PP and calculation

From now: assume we have a target () and a proposal P. We can sample from P and can evaluate

r=q/p.

Idea: Set II as the base process over R x A with mean measure A x P. Then, use one of the

theorems to modify II, find first arrival of modified process.

1. Thinning theorem:

Want:

Therefore, set
p(x) = q(z)/p(x).

2. However, we need to ensure that 0 < p(z) < 1. So instead, set

where M = sup{q(x)/p(x)}

3. Hence, to sample, simulate II, and for an arrival (7, X), delete it with probability r(z)/M.

Return the first point that wasn’t deleted.

4.3 Mapping theorem: A* Sampling
Similar idea as before.

1. Mapping theorem: for h one-to-one, we have

hopu([0, ] x B) = / p(z) da dt

h=1([0,s]x B)

Want:

hap([0, 8] x B) = / q(z) dz dt

[0,s]xB

:S/Bq(;v)dx



Idea: Restrict to only temporal shifts. Especially good idea, since R™ is guaranteed to have

“more” structure. Thus, let h(t,z) = (f(x,t),«). Then:

hapt([0, 8] x B) = /h . p(z) dx dt

/ / x) dt dx
f=1([0,s],
(93"
/ / x)dtdx
F=H0,x)

=Au (5,2) — /710, 2))p(e) dt d

Therefore, we want f~1(0,z) =0, and f~1(s,z)p(z) = s - q(x). Thus,

From which

2. runtime is geometric
3. Simulation:

4. depth-limitation possible

4.4 Restriction theorem: Greedy Poisson Rejection Sampling

Again, similar idea as before. We pick a function ¢ : A — R* and let

U={(t,z) e RT x A|t < ()}

Then, by the restriction theorem, II|y is a Poisson process with mean measure

Hlo(A) = (AN T)

Let (T, X)) be the first arrival off |y, and let X ~ ¢p- Then,

gp(z) _ / o) P[T > 1] dt.
0

p(z)

(34)

(35)

(43)

WLOG, we can decompose ¢ = o or. Then, we want to pick ¢ such that g, = ¢q. It turns out, that

I yust solve

(0_1)/ = wq (a_l) —o! - wp (0_1) ,

to achieve this, o~

(44)



where

q(Z)

wp(h) =Py p [ > h} .

p(Z) —

For the triangular-uniform case, where the triangle has base ¢:

2h

(45)

(46)
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