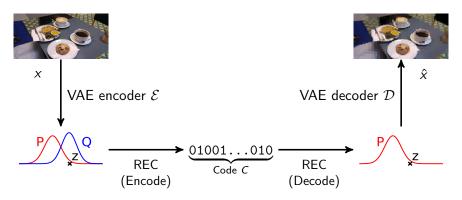
Faster Relative Entropy Coding with Greedy Rejection Coding


Gergely Flamich* Stratis Markou*

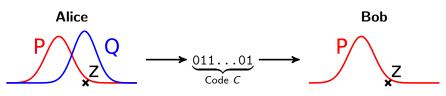
José Miguel Hernández-Lobato

Computational and Biological Learning Lab Department of Engineering

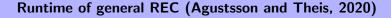
Learned compression with VAEs

 \checkmark Does not require quantizing z.

 $\checkmark\,$ Lossless/lossy compression, private fedrerated learning and others.


Relative Entropy Coding

Setup: Alice holds target distribution Q. Alice and Bob share


- Proposal distribution P.
- **Public** sequence of fair coin tosses $S = (s_1, s_2, ...)$.

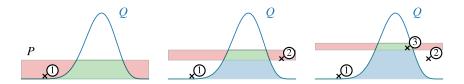
Goal: Alice uses P, S and Q to produce code C which

- Is decodable by Bob.
- Represents exact sample from Q.

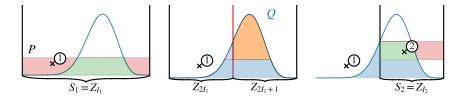
- As small codelength |C| as possible.
- As short runtime as possible.

Without additional assumptions, any REC scheme will have

 $\Omega(\exp(D_{\mathrm{KL}}[Q\|P]))$


expected runtime.

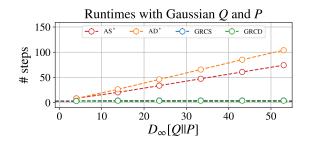
Runtime of A* coding (Flamich et al., 2022)


For 1D, unimodal q/p, the expected runtime of A^{*} coding is $\mathbb{E}[T] = \mathcal{O}(D_{\infty}[Q||P]) = \mathcal{O}\left(\log \sup_{z \in \mathbb{R}} \frac{q(z)}{p(z)}\right).$

Greedy Rejection Coding

We extend a rejection-sampling REC algorithm (Harsha et al., 2007):

Augment algorithm by partitioning the sample space:


Correctness of GRC

Let q be the target and p the proposal distribution. Let X be the sample returned by GRC. Then, under mild assumptions, GRC terminates with almost surely and $X \sim q$.

Runtime and codelength of GRC

Let T denote the number of steps GRC takes to run. For 1D unimodal q/p, there exists a partition process, such that $\mathbb{E}[T] = \mathcal{O}(D_{\mathrm{KL}}[Q\|P]).$ $\mathbb{H}[X \mid S] \leq D_{\mathrm{KL}}[Q\|P] + 2\log(D_{\mathrm{KL}}[Q\|P] + 1) + \mathcal{O}(1).$

Experimental Results

TRAINING OBJECTIVE	# LATENT	Total BPP with ζ coding	Total BPP with δ coding
ELBO	20 50	$\begin{array}{c} 1.472 \pm 0.004 \\ 1.511 \pm 0.003 \end{array}$	$\begin{array}{c} 1.482 \pm 0.004 \\ 1.530 \pm 0.003 \end{array}$
Modified ELBO	20 50	$\begin{array}{c} 1.470 \pm 0.004 \\ 1.484 \pm 0.003 \end{array}$	$\begin{array}{c} 1.478 \pm 0.004 \\ 1.514 \pm 0.003 \end{array}$

We develop Greedy Rejection Coding, an optimal REC algorithm.

For more information, find us at Great Hall & Hall (B1 and B2), poster #1220 Wednesday 13 Dec 8:45-10:45.

