Lucas Theis
Correlated r.v.s \(X, Y \sim P_{X, Y}\)
Alice receives \(Y \sim P_Y\)
Bob wants to simulate \(X \sim P_{X \mid Y}\)
How many bits does Alice need to send to Bob?
When common randomness \(S\) available (SFRL): \[ H[X \mid S] \leq I[X; Y] + \log (I[X; Y] + 1) + 4. \]
Originally proposed by Harsha et al. (2006) for discrete distributions.
We extend it to Borel probability measures over Polish spaces.
Target \(Q = \mathcal{N}(\mu, \sigma^2)\), proposal \(P = \mathcal{N}(0, 1)\)
Change of variables: \(U = F_P(X)\)
If rejected, normalize upper half and repeat:
To encode sample:
Simulate \(X_i \sim P\) with common randomness \(S\)
Count number of rejections \(K\)
Transmit \(K\) using a Zeta coding distribution: \[ \zeta(k \mid \alpha) \propto k^{-\alpha} \]
For fixed \(Q\) and \(P\): \[ H[K] \leq D_{KL}[Q \,\Vert\, P] + \log(D_{KL}[Q \,\Vert\, P] + 1) + 4 \]
When \(Q \gets P_{X \mid Y}\) and \(P \gets P_X\), average over \(Y\): \[ H[K] \leq I[X; Y] + \log(I[X; Y] + 1) + 4 \]
\[ \mathbb{E}[K + 1] = 2^{D_{\infty}[Q \,\Vert\, P]} \] where \[ D_{\infty}[Q \,\Vert\, P] = \log\left(\mathrm{ess\,sup}_{x \in \Omega}\left\{\frac{dQ}{dP}(x)\right\}\right) \]
\[ X \mid \mu \sim \mathcal{N}(\mu, \rho^2I), \quad \mu \sim \mathcal{N}(0, \sigma^2I) \]
Then: \[ P_{X} = \mathcal{N}(0, (\sigma^2 + \rho^2)I) \]
Now, we find: \[ \mathbb{E}[K + 1] = \infty \]
Use overdispersed marginal: \[ P_s = \mathcal{N}(0, (s^2 + \rho^2)I), \quad \sigma^2 < s^2 \]
Most of sample space useless, adapt proposal:
Need suitable sequence of bounds \(B_1, B_2, \dots\).
Need to communicate \(K, B_K\)!
Theorem: \[ H[K] \leq C + \log(C + 1) + 3.63, \] where \(C = I[X;Y] + \mathbb{E}[\log P(B_{m_{K}})]\).
\[ \lfloor c + U \rceil - U \stackrel{d}{=} c + U' \] where \(U, U' \sim \mathrm{Unif}(-1/2, 1/2)\)
If \(c \in [1/2, M - 3/2)\), then \(\lfloor c + U \rceil \in [0:M - 1]\).
\[ \frac{\lfloor c + U \rceil - U}{M} \sim \mathrm{Unif}\left(\frac{c}{M} - \frac{1}{2M}, \frac{c}{M} + \frac{1}{2M} \right). \]
With DQ, we can encode any bound with size \(1 / M\).
What about bounds with arbitrary rational sizes?
DQ + Bits-back: Bits-back Quantization (BBQ)
Apply AGRS to our Gaussian example: