# The Redundancy of Non-Singular Channel Simulation

Gergely Flamich Sharang Sriramu

Aaron Wagner

# **Channel Simulation: General setup**

#### Definition and goal

- Dependent  $X, Y \sim P_{X,Y}$
- Independent common randomness:  $Z \sim P_Z$ , with  $X \perp Z$
- Want to encode **one sample**  $Y \sim P_{Y|X}$  with finitely many bits:
  - Encoder:  $f(\cdot, z) : \mathcal{X} \to \{0, 1\}^*$  prefix code
  - Decoder:  $g(\cdot, z) : \{0, 1\}^* \to \mathcal{Y}$

$$Z \sim P_Z \quad \rightarrow \quad g(f(x,Z),Z) \sim P_{Y|X=x}$$

- Rate:  $R = \mathbb{E}\left[|f_Z(X)|\right]$
- Want to characterise:  $R^* = \inf_{g, f} R$

#### Applications

- $Y = X + \epsilon$ , where  $\epsilon \sim \mathcal{N}(0, 1)$ : data compression with diffusion
- $Y = X + \epsilon$ , where  $\epsilon \sim \mathcal{L}(0,1)$ : differential privacy

#### One-shot

Li and El Gamal [2018]:

 $\mathbb{I}[X:Y] \le R^* \le \mathbb{I}[X:Y] + \log(\mathbb{I}[X:Y] + 1) + 5$ 

#### Asymptotic

For  $P_{X,Y}$ , channel  $P_{Y|X}$  singular if  $dP_{X|Y}/dP_X \propto 1$ , otherwise non-singular.

Sriramu and Wagner [2024]: Let  $X^n, Y^n \sim P_{X,Y}^{\times n}$ , normalised rate  $R_n^* = R^*/n$ . Then:

 $\begin{cases} R_n^* \sim \mathbb{I}[X : Y] & : P_{Y|X} \text{ singular} \\ \\ R_n^* \lesssim \mathbb{I}[X : Y] + \frac{1}{2} \frac{\log n}{n} & : P_{Y|X} \text{ non-singular} \end{cases}$ 

#### One-shot

Channel simulation divergence [Goc and Flamich, 2024]:  $D_{CS}[Q||P]$ . For Polish  $X, Y \sim P_{X,Y}$ 

 $\mathbb{I}[X:Y] \leq \mathbb{E}_{Y \sim P_Y} \left[ D_{CS}[P_{X|Y} \| P_X] \right] \leq R^*.$ 

#### Asymptotic

For non-singular  $P_{Y|X}$ :

$$\mathbb{I}[X:Y] + \frac{1}{2}\frac{\log n}{n} \lesssim R_n^*$$

thus

$$\begin{cases} R_n^* \sim \mathbb{I}[X : Y] & : P_{Y|X} \text{ singular} \\ R_n^* \sim \mathbb{I}[X : Y] + \frac{1}{2} \frac{\log n}{n} & : P_{Y|X} \text{ non-singular} \end{cases}$$

### Part I: width function

Probability measures  $Q \ll P$ . Width function:



 $w_P$  is a PDF! Let H be a RV with PDF  $w_P$ . Then:

$$D_{CS}[Q||P] = h[H] = -\int_0^\infty w_P(h) \log w_P(h) \, dh$$

### Part I: Result & Proof Sketch

For Polish  $X, Y \sim P_{X,Y}$ ,  $Z \sim P_Z$ ,  $Z \perp X$ :

# $\mathbb{E}_{Y \sim P_Y} \left[ D_{CS}[P_{X|Y} \| P_X] \right] \leq R^*.$

Proof when Y discrete (Prop. 1 of Li and El Gamal [2018]):

$$R^* \approx \mathbb{H}[Y \mid Z] = -\mathbb{E}_{Y, Z \sim P_{Y, Z}} [\log p(Y \mid Z)]$$
  
= 
$$-\sum_{y \in \mathcal{Y}} \mathbb{E}_{Z \sim P_Z} [p(y \mid Z) \log p(y \mid Z)]]$$
  
$$\geq \mathbb{E}_{Y \sim P_Y} [D_{CS}[P_{X \mid Y} \parallel P_X]]$$

# Part I: Fixing the troublesome step

Let  $\phi(z) = P_{Y|z}$  and set  $\mathcal{P} = \phi \, \sharp \, P_Z$  (Palm kernel)

$$\mathbb{H}[Y \mid Z] = -\mathbb{E}_{Z \sim P_Z} \left[ \mathbb{E}_{Y \sim P_{Y \mid Z}} \left[ \log p(Y \mid Z) \right] \right]$$
$$= -\int_{\mathfrak{P}_{\mathcal{Y}}} \int_{\mathcal{Y}} \log \pi(y) \, d\pi(y) \, d\mathcal{P}(\pi)$$
$$= -\int_{\mathcal{Y}} \int_{\mathfrak{P}_{\mathcal{Y}}} \log \pi(y) \, d\mathcal{P}_{y}(\pi) \, d\mathcal{P}_{Y}(y)$$

 $\mathcal{P}_{y}$  – local Palm kernel

$$\operatorname{supp} \mathcal{P}_{y} = \{ \pi \in \mathfrak{P}_{\mathcal{Y}} \mid y \in \operatorname{supp} \pi \}$$

Adapt stochastic dominance argument for  $\int_{\mathfrak{P}_{\mathcal{Y}}} \log \pi(y) \, d\mathcal{P}_{\mathcal{Y}}(\pi)$ .

### Part II: Asymptotic result & Proof sketch

 $P_{X,Y}$  with  $P_{Y|X}$  non-singular. Then, for any sequence  $Z_n$  of common randomness:

$$\lim_{n \to \infty} \frac{nR_n^* - \mathbb{I}[X^n : Y^n]}{\log n} \ge \frac{1}{2}$$

Proof idea:

• From part I:  $nR_n^* \geq \mathbb{E}_{Y \sim P_Y} \left[ D_{CS}[P_{X|Y} || P_X] \right]$ 

Show

$$\lim_{n \to \infty} \frac{\mathbb{E}_{Y \sim P_Y} \left[ D_{CS}[P_{X|Y} || P_X] \right] - \mathbb{I}[X^n : Y^n]}{\log n} = \frac{1}{2}$$

Observe

 $\mathbb{E}_{\mathbf{Y}^n}[D_{CS}[P_{X^n|\mathbf{Y}^n} \| P_X^{\times n}]] - \mathbb{I}[X^n : Y^n] = \mathbb{E}_{\mathbf{Y}^n}[h[\log H_{\mathbf{Y}^n}]] + \log e$ 

### Part II: Proof sketch: CLT

Prove a CLT for log  $H_{Y^n}$ :

**1** When  $P_{Y|X}$  non-singular:  $Var[log H_{Y^n}] = \Theta(n)$ :

$$h[\log H_{Y^n}] = \frac{\log n}{2} + h\left[\frac{1}{\sqrt{n}}(\log H_{Y^n} - \mathbb{E}\left[\log H_{Y^n}\right])\right]$$

2 For large n

$$\log H_{Y^n} \approx \log \frac{dP_{X^n \mid Y^n}}{dP_{X^n}} (X^n \mid Y^n) = \sum_{k=1}^n \log \frac{dP_{X \mid Y}}{dP_X} (X_k \mid Y_k)$$

**3** Show Lindeberg-Feller condition for  $\log \frac{dP_{X|Y}}{dP_X}(X_k \mid Y_k)$ , hence

$$\frac{1}{\sqrt{n}}(\log H_{Y^n} - \mathbb{E}\left[\log H_{Y^n}\right]) \to \mathcal{N}(0, \sigma^2)$$

#### One-shot

Channel simulation divergence [Goc and Flamich, 2024]:  $D_{CS}[Q||P]$ . For Polish  $X, Y \sim P_{X,Y}$ 

$$\mathbb{I}[X:Y] \leq \mathbb{E}_{Y \sim P_Y} \left[ D_{CS}[P_{X|Y} \| P_X] \right] \leq R^*.$$

#### Asymptotic

For non-singular  $P_{Y|X}$ :

$$R_n^* \gtrsim \mathbb{I}[X:Y] + \frac{1}{2} \frac{\log n}{n}$$

thus

$$\begin{cases} R_n^* \sim \mathbb{I}[X : Y] & : P_{Y|X} \text{ singular} \\ R_n^* \sim \mathbb{I}[X : Y] + \frac{1}{2} \frac{\log n}{n} & : P_{Y|X} \text{ non-singular} \end{cases}$$

Let (f, g, Z) be a valid scheme simulating the channel with rate R  $nR \ge \mathbb{H}[f(X^n, Z)|Z]$   $\ge \mathbb{I}[X^n : f(X^n, Z)|Z]$   $\ge \mathbb{I}[X^n : Y^n|Z]$  $= \mathbb{E}\left[\log \frac{dP_{X^n|Y^n,Z}}{dP_{Y^n}}\right]$  Let (f, g, Z) be a valid scheme simulating the channel with rate R  $nR \ge \mathbb{H}[f(X^n, Z)|Z]$   $\ge \mathbb{I}[X^n : f(X^n, Z)|Z]$   $\ge \mathbb{I}[X^n : Y^n|Z]$  $= \mathbb{E}\left[\log \frac{dP_{X^n|Y^n,Z}}{dP_{Y^n}}\right]$ 

### Deterministic mapping induced by the CR



### Deterministic mapping induced by the CR



 $nR \geq \mathbb{H}[f(X^n, Z) \mid Z]$  $\geq \mathbb{I}[X^n : f(X^n, Z) \mid Z]$  $\geq \mathbb{I}[X^n : Y^n \mid Z]$  $= \mathbb{E}\left[\log\frac{dP_{X^n|Y^n,Z}}{dP_{X^n}}\right]$  $A(y_1^n,z)$   $y_1^n$  $y_2^n$  $A(y_2^n, z)$  $y_3^n$  $A(y_3^n, z)$  $A(y_k^n, z)$   $y_k^n$  $\mathcal{X}^n$  $\mathcal{Y}^n$ 

$$\frac{dP_{X^n|Y^n,Z}}{dP_{X^n}}(x^n|y^n,z) = \frac{\mathbf{1}\left[x^n \in A(y^n,z)\right]}{P_{X^n}(A(y^n,z))}$$

 $\therefore nR \geq -\mathbb{E}_{Y^n,Z} \left[ \log P_{X^n}(A(Y^n,Z)) \right]$ 

 $nR \geq \mathbb{H}[f(X^n, Z) \mid Z]$  $\geq \mathbb{I}[X^n : f(X^n, Z) \mid Z]$  $> \mathbb{I}[X^n : Y^n \mid Z]$  $= \mathbb{E}\left[\log\frac{dP_{X^n|Y^n,Z}}{dP_{X^n}}\right]$  $A(y_1^n, z)$  $y_1^n$  $y_2^n$  $A(y_2^n, z)$  $y_3^n$  $A(y_3^n,z)$  $A(y_k^n, z)$  $y_k^n$  $\mathcal{X}^n$  $\mathcal{Y}^n$ 

$$\frac{dP_{X^n|Y^n,Z}}{dP_{X^n}}(x^n|y^n,z) = \frac{\mathbf{1}\left[x^n \in A(y^n,z)\right]}{P_{X^n}(A(y^n,z))}$$

 $\therefore nR \ge -\mathbb{E}_{Y^n,Z} \left[ \log P_{X^n}(A(Y^n,Z)) \right]$ Coincidence probability

### Bounding the coincidence probability

Replace  $A(y^n, z)$  with a more structured set

# Likelihood balls

We define likelihood balls with radius  $\boldsymbol{\alpha}$  as

$$B_{\alpha} = \left\{ x^{n} \in \mathcal{X}^{n} : \frac{1}{n} \sum_{i=1}^{n} \log \frac{dP_{X|Y}}{dP_{X}}(x_{i}|y_{i}) \ge \alpha \right\}$$
$$\bullet$$
$$x_{*}^{n} \text{ maximizes } \frac{dP_{X^{n}|Y^{n}}}{dP_{X^{n}}}(\cdot|y^{n})$$

# Mean likelihood

$$\operatorname{LLR}(S) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\log\frac{dP_{X|Y}}{dP_{X}}(X_{i}|y_{i})\middle| X^{n} \in S\right]$$



Choose the radius  $i_{y^n,z}$  s.t.  $LLR(B_{i_{y^n,z}}(y^n)) \approx LLR(A(y^n,z))$ Then,

$$P_{X^n}(B_{i_{y^n,z}}(y^n)) \geq P_{X^n}(A(y^n,z))$$

Note that

$$\imath_{y^n,z} \approx \mathrm{LLR}(B_{\imath_{y^n,z}}(y^n))$$

# Completing the proof

$$nR \ge -\mathbb{E}_{Y^n,Z} \left[ \log P_{X^n}(A(Y^n, Z)) \right]$$
  
$$\ge -\mathbb{E}_{Y^n,Z} \left[ \log P_{X^n}(B_{i_{Y^n,Z}}) \right]$$
  
$$= -\mathbb{E}_{Y^n,Z} \left[ \log P_{X^n} \left( \frac{1}{n} \sum_{i=1}^n \log \frac{dP_{X|Y}}{dP_X}(X_i|Y_i) \ge i_{Y^n,Z} \right) \right]$$

# Warmup: Coarse large deviations result

**Theorem**[Dembo and Zeitouni, 2011]. Given independent random variables  $Z_1, Z_2, \dots, Z_n$  and  $\gamma > \frac{1}{n} \sum_{i=1}^n \mathbb{E}[Z_i]$ , for sufficiently large n,

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}>\gamma\right)\leq\exp(-n\Lambda_{n}^{*}(\gamma)),$$

 $\Lambda_n^*(\gamma)$ : Large deviations rate function

# Warmup: First order result

In our setting,

$$P_{X^n}\left(\frac{1}{n}\sum_{i=1}^n\log\frac{dP_{X|Y}}{dP_X}(X|y_i)>i_{Y^n,z}\right)\leq \exp(-n\Lambda_n^*(i_{Y^n,z})),$$

where

$$egin{aligned} &\Lambda_n^*(\imath_{y^n,z}) pprox \imath_{y^n,z} \ &pprox \operatorname{LLR}(\mathcal{B}_{\imath_{y^n,z}}(y^n)) \ &pprox \operatorname{LLR}(\mathcal{A}(y^n,z)). \end{aligned}$$

Then,

$$nR \ge -\mathbb{E}_{Y^n, Z} \left[ \log P_{X^n} \left( \frac{1}{n} \sum_{i=1}^n \log \frac{dP_{X|Y}}{dP_X}(X_i|Y_i) \ge \iota_{Y^n, Z} \right) \right]$$
$$\ge -\mathbb{E}_{Y^n, Z} \left[ \log \exp \left( -n \text{LLR}(A(Y^n, Z)) \right) \right]$$
$$= I(X; Y)$$

### Refined large deviations result

**Theorem**[e.g. Altuğ and Wagner [2021]]. Given independent random variables  $Z_1, Z_2, \dots, Z_n$  and  $\gamma > \frac{1}{n} \sum_{i=1}^n \mathbb{E}[Z_i]$ ,

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}>\gamma\right)\leq\frac{(\cdots)}{\sqrt{\sum_{i=1}^{n}\operatorname{Var}(\tilde{Z}_{i})}}\exp(-n\Lambda_{n}^{*}(\gamma)),$$

 $\Lambda_n^*(\gamma)$ : Large deviations rate function,

 $\tilde{Z}_k$ : Exponentially tilted version of  $Z_k$ 

### Refined large deviations result

In our setting,

$$P_{X^n}\left(\frac{1}{n}\sum_{i=1}^n\log\frac{dP_{X|Y}}{dP_X}(X|y_i)>\imath_{y^n,z}\right)\leq\frac{(\cdots)\exp(-n\Lambda_n^*(\imath_{y^n,z}))}{\sqrt{\sum\limits_{i=1}^n\operatorname{Var}_{\tilde{X}_i}\left(\log\frac{dP_{X|Y}}{dP_X}(\tilde{X}_i|y_i)\right)}},$$

 $P_{\tilde{X}} \approx P_{X|Y}(\cdot|y_k)$ 

For non-singular channels,  $\operatorname{Var}\left(\log \frac{dP_{X|Y}}{dP_X}|Y\right) > 0$ 

Hence, 
$$\sum_{i=1}^{n} \operatorname{Var}_{\tilde{X}_{i}} \left( \log \frac{dP_{X|Y}}{dP_{X}}(\tilde{X}_{i}|y_{i}) \right) = \Theta(n)$$

### **Refined large deviations result**

In our setting,

$$P_{X^n}\left(\frac{1}{n}\sum_{i=1}^n\log\frac{dP_{X|Y}}{dP_X}(X|y_i)>i_{y^n,z}\right)\leq\frac{(\cdots)\exp(-n\Lambda_n^*(i_{y^n,z}))}{\sqrt{n}},$$

 $P_{\tilde{X}} \approx P_{X|Y}(\cdot|y_k)$ 

For non-singular channels, 
$$\operatorname{Var}\left(\lograc{dP_{X|Y}}{dP_X}|Y
ight)>0$$

Hence, 
$$\sum_{i=1}^{n} \operatorname{Var}_{\tilde{X}_{i}} \left( \log \frac{dP_{X|Y}}{dP_{X}}(\tilde{X}_{i}|y_{i}) \right) = \Theta(n)$$

#### One-shot

For Polish  $X, Y \sim P_{X,Y}$ 

$$\mathbb{I}[X:Y] \leq \mathbb{E}_{Y \sim P_Y} \left[ D_{CS}[P_{X|Y} \| P_X] \right] \leq R^*.$$

#### Asymptotic

For non-singular  $P_{Y|X}$ :

$$\mathbb{I}[X:Y] + \frac{1}{2}\frac{\log n}{n} \lesssim R_n^*$$

thus

$$\begin{cases} R_n^* \sim \mathbb{I}[X : Y] & : P_{Y|X} \text{ singular} \\ R_n^* \sim \mathbb{I}[X : Y] + \frac{1}{2} \frac{\log n}{n} & : P_{Y|X} \text{ non-singular} \end{cases}$$

# **References** I

- Y. Altuğ and A. B. Wagner. On exact asymptotics of the error probability in channel coding: symmetric channels. *IEEE Transactions on Information Theory*, 67(2):844–868, 2021.
- D. Goc and G. Flamich. On channel simulation with causal rejection samplers. In 2024 IEEE International Symposium on Information Theory (ISIT), 2024. doi: 10.1109/ISIT57864.2024.10619339.
- C. T. Li and A. El Gamal. Strong functional representation lemma and applications to coding theorems. *IEEE Transactions on Information Theory*, 64(11):6967–6978, 2018.
- S. M. Sriramu and A. B. Wagner. Optimal redundancy in exact channel synthesis. In 2024 IEEE International Symposium on Information Theory (ISIT), pages 1913–1918, 2024. doi: 10.1109/ISIT57864.2024.10619703.